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Abstract

There are many description logics, each with different expressiveness. We will focus on
ALCQme2, which is obtained by extending ALCQ with the I-me-construct by Marx in a
bounded way. Its relation to ALCHIQ is shown: on the one hand role inverses and hier-
archies can be encoded in ALCQme2 and on the other hand an encoding of an arbitrary
ALCQme2 TBox in an ALCHIQ TBox and RBox is given in a consistency-preserving
way, exploiting something similar to the tree model property known from other descrip-
tion logics. This implicitly gives a consistency checking algorithm for ALCQme2 TBoxes,
as there is a consistency checker for ALCHIQ.

The analogous thing also is done for the widespread ontology format OWL. A method
is given to effectively encode an ALCHIQme2 TBox and RBox in OWL. The imple-
mentation of the reduction – written as a part of this thesis – can be used to convert
such an ALCHIQme2 ontology consistency preserving into a plain OWL ontology whose
satisfiability then can be checked with any OWL reasoner. Empirical tests show that
the blowup regarding consistency checking time is acceptable.
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1 Introduction

The need for representing knowledge arises in many different fields. Let us look at three
of them: the semantic web, medical applications and social networking.

The field of the Semantic Web – sometimes considered as the Web 3.0 – purposes to
combine and connect the information distributed all over the World Wide Web, to
provide a better user experience. Imagine you have to feed your cat but also want to
save money by only buying food with discount. Querying a search engine for stores
that offer cat food at a discount then also lists shops which announce “20% off on pet
food”. Of course, this is only possible if it is known to the database that cats are pets.
If another web page provides the information that cats can eat beef, the response to the
query by the knowledge database also would contain butchers that sell beef, currently
on discount.

In the second field, the medical sector, different institutions for health care want to share
their research results with each other, e.g. which disease occurs at which organ under
which circumstances.

The third field, very prominent in the media nowadays, is social networking. The main
knowledge there is the relation between people and their attitudes, for example their
gender or who is kin to whom.

All these different kinds of information need to be made persistent in some way. The
solution is the use of ontologies: the task of an ontology is to describe a situation of
some entities and the relations in between them. In the first field, the entities could be
different kinds of food. Additional relations could describe where it is sold and which
kind of species consumes it. In the second field the entities are human organs and
diseases. Relations would be how those affect each other. In the field of human relations
the entities could be people and attitudes of them. E.g. being friendly can be seen as
an attitude when defining that only those people are friendly who are liked by someone.
Being a father also can be an entity when saying that a person is a father if he is male
and there is at least one person he is the parent of.

The intention behind that is not just to encode the situation but also to be able to infer
more knowledge about the situation by a computer program; this process is called rea-
soning. Interesting knowledge about an ontology is for example, whether the description
is contradictory or not, or e.g. how the terms imply each other: is a father also a parent?
Is a parent also a father? Are the terms parent and father equivalent?

Thus it is necessary that an ontology is expressed in a formal and syntactically well-
defined way. The most common ontology file format is the Web Ontology Language
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1 Introduction

(OWL)1, defined by the W3C. For OWL, many reasoning applications are available.
The reasoning problems for OWL are all decidable. Even if the theoretical worst-case
complexity of most of the reasoning problems is very hard, the time needed to solve the
problems for ontologies which appear in practice is acceptable.

But beside all these nice properties, OWL allows describing self-reference only in a very
restricted manner. Self-referential constructs occur often in natural language, so we are
interested in the use of those in ontologies. An example for a self-referential construct
in the context of relationships between people are narcissists: they are those people
who love themselves. Further examples for descriptions using self-reference are given by
statements like “I only like other people who also like me” or “each person meets another
person who is smarter”. From these examples the narcissist is the only one expressible
in OWL, i.e. it only allows the restricted way of directly stating how a certain group of
individuals is related to itself.

The reason for this restriction is the following: it is known that allowing self-reference
in general makes reasoning problems undecidable. But as it turned out recently, it
stays decidable under conditions, which are weaker than those stipulated by OWL. The
conditions are met if we allow saying “I only like other people who also like me” but
prohibit saying “I only like people who like other people who happen to like me”. So
when phrasing the description in a first person perspective, the nesting depth of the
relative clause in which the me occurs is the essential criterion. So it is only allowed to
nest the sentences at most 2 levels deep – the main clause and one relative clause.

We will extend the OWL format with this bounded version of self-reference, for which
it stays decidable. To be able to perform reasoning, such an OWL ontology with self-
reference is transformed into a plain OWL ontology by the implementation written along
with this thesis. Then the actual reasoning task can be done by any OWL reasoning
software.

The theoretical background of this transformation is described by this thesis, together
with the adaption to OWL and some benchmarks to see that it is applicable in practice.

1The acronym was changed from WOL to OWL [1]
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2 Preliminaries

The family of description logics consists of many different formal languages used for
knowledge representation. Each of them has own properties and a certain expressiveness.
To give a solid base for what is used in the following chapters, first some mathematical
definitions and then an introduction to description logics and ontologies is given. After
defining these basics, an outline of the thesis is given in Section 2.7.

This chapter will give the definitions needed for this work. They are mostly based on
the description logic primer by Krötzsch, Simancik, and Horrocks [2].

2.1 Basic Definitions

To standardize the notation the following basics are defined.

Definition 2.1 (Boolean operations). Boolean values will be expressed as members of
the set 2 := {0, 1} = {true, false} together with the binary operators ∧,∨ : 2× 2 → 2
and unary operator¯: 2→ 2, which are defined by Table 2.1 �

a b a ∧ b a ∨ b ā

0 0 0 0 1
0 1 0 1 1
1 0 0 1 0
1 1 1 1 0

Table 2.1

Definition 2.2 (Disjoint union). A ∪̇B denotes the disjoint union of two sets A and B.
It behaves like the conventional union while emphasizing that A and B are considered
to be disjoint. If A and B intersect, then the name clash is resolved by renaming the
according elements properly.

We will typically use ∪̇ when extending a set S with an additional element x: S ′ :=
S ∪̇ {x}. �

Definition 2.3 (Power set). The power set – the set of all subsets – of a given set S is
denoted by ℘(S). �
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2 Preliminaries

Definition 2.4. For a given – not necessarily finite – set X, a relation R ⊆ X2 is called
a tree if there is an r ∈ X and a function f : X \ {r} → X such that:

• R = f−1.

• For each x ∈ X \ {r}, there is a n ∈ N with: fn(x) = r.

The node r is called the root of the tree and f is the father function which maps each
node to its father in the tree. �

2.2 Description Logics and Ontologies

An Ontology is a finite set of names and axioms. The names are the terms of a certain
domain to talk about and the axioms are facts in this domain formally describing the
relation of these terms.

Axioms represent knowledge in a formal way. Having the syntactical context defined
later, we will be able to form axioms which represents the following knowledge for the
terms parent, is parent of, grandparent, mother and female:

• A parent is someone who is the parent of someone.

• A grandparent is someone who is the parent of someone who is the parent of
somebody else.

• A mother is a female parent.

The usecase for ontologies is to store and to automatically infer further knowledge from
the axioms in the ontology. E.g. in the above example the following can be inferred:

• A grandparent is also a parent.

• A mother is the parent of someone.

In this example, the terms can be divided into two different kind of groups: each of
parent, grandparent, mother and female describes a kind of individuals. So given a
concrete set of relatives, each individual is either female or not, is either a parent or not,
and so on. Such terms are called concepts. That means that in a concrete situation,
each concept can be interpreted as a subset of all individuals.

In general, concepts can also be composed together to form complex expressions. E.g.
those who are parents and not female is also a concept and stands for a subset of all
individuals, even though it is not explicitly given a compact name.

The term is parent of describes the relation between individuals: in a concrete set of
relatives, for each pair a, b of individuals, a either is the parent of b or not. Such a kind
of term is called role and in a concrete situation each role is to be interpreted as binary
relation in the set of individuals. We have seen already, that concepts can be defined
using roles, e.g. those who are parent of someone.

The remaining question is how to exactly express these axioms, concepts and roles as
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formulas. To be able to describe the meaning of concepts precisely and to do things
automatically, a formal syntax for axioms is needed. On the one hand we want the
expressive power to model ideas like grandparent, but on the other hand problems like
inferring knowledge still should be computable, preferably with a good complexity. As
there is not one perfect compromise between expressiveness and complexity, there is not
the description logic but a family of languages with different flavors, how axioms can be
built.

2.3 The Description Logic ALC

The most basic description logic is considered to be ALC. Many other description logics
are extensions of ALC. Let us look at ALC first:

Definition 2.5 (Syntax of ALC). Let NC , NR be disjoint finite sets of concept names
and role names. In the description logics we consider, complex concepts and roles are
formulas and can be built by combining the names with certain operators. The sets C
and R denote the set of concept and role expressions that can be built. In the base
case of ALC, no complex role names are allowed, so the set R of role expressions only
contains role names:

R = NR

Concept expressions can be built using concept names and many operators. The set of
concept expressions C is defined as follows:

C ⊇ NC ,

C 3 C uD,¬C, ∃R.C for all C,D ∈ C, R ∈ R.

If a concept expression C ∈ C is also in NC , then C is called an atomic concept, otherwise
it is called complex.

In ALC it can be expressed, that for two concepts C,D ∈ C, C is a subconcept of D,
syntactically expressed by the axiom:

C v D

Two concepts C,D ∈ C also can be marked as being equivalent, expressed by this axiom:

C ≡ D

These both type of axioms which are talking about the relation of concepts are called
TBox axioms. For concrete NC and NR, a concrete finite set of TBox axioms is called
TBox. Later we also will define other kind of axioms, i.e. different type of “Boxes”. �

One may have noticed that the intersection u of two concepts is defined as a formula
constructor but not the union. The first reason for that is to keep the syntax as compact
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2 Preliminaries

as possible. Secondly it is still possible two define the union and many other operators
implicitly:

C tD :≡ ¬(¬C u ¬D), ∀R.C :≡ ¬∃R.¬C, (2.1)

C → D :≡ ¬C tD, C ↔ D :≡ (C → D) u (D → C), (2.2)

⊥ :≡ N u ¬N > :≡ ¬⊥ (2.3)

for C,D ∈ C, R ∈ R and for any atomic concept N ∈ NC .

The syntax already gives an intuitive meaning of the formulas. So e.g. bottom ⊥ contains
no individuals and its counterpart top > contains all individuals. To encode the example
from before, we need suitable concept and role names NC and NR:

NC = {Parent,Grandparent,Female}
NR = {ParentOf}

The axioms, including the inferred facts, from the example in Section 2.2 are phrased
as follows:

Parent ≡ ∃parentOf.>
Grandparent ≡ ∃parentOf.∃parentOf.>

Mother ≡ Female u Parent

Grandparent v Parent

Mother v ∃parentOf.>

Let us look at the ∃ term more closely. ∃R.C is a concept and describes all individual
that are in an R-relation to someone in C. For example

∃ parentOf︸ ︷︷ ︸
R

. >︸︷︷︸
C

are exactly those individuals that are the parent of someone. The concept C can be a
complex concept expression again, so the concept

∃ parentOf︸ ︷︷ ︸
R

.∃parentOf.>︸ ︷︷ ︸
C

contains those who are the parent of a parent.

The only non-intuitive construct is the derived ∀R.C: it is defined as those individuals
for which no individual exists which they are in R relation to and which is not in C. I.e.
it contains exactly those individuals which are only related via R to individuals that are
in C. An example is the individuals who only have daughters, formally:

∀parentOf.female

Similar to the universal quantifier in logics, this concept also comprehends individuals
who do not have any children: all their children are female.

All this already gave an intuition about the meaning of the formulas. The exact inter-
pretation is given by the semantics.
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2.3 The Description Logic ALC

Definition 2.6 (Semantics of ALC). For a given – not necessarily finite – set of indi-
viduals ∆I , the operation ·I maps each atomic concept to a subset of individuals and
each role to a binary relation between individuals. So for an atomic concept N ∈ NC ,
NI ⊆ ∆I describes the set of individuals being in the concept N . For an atomic role
R ∈ NR, RI ⊆ ∆I × ∆I contains those pairs of individuals which are connected via
R. The semantics of complex ALC concepts is defined inductively for every operator by
Table 2.2. Note that the semantics definitions for the implicitly defined constructs t,
>, ⊥ and ∀ are redundant here and are given for the sake of intuition.

The semantics of TBox axioms is defined by Table 2.3. Any interpretation ·I mapping
the concepts to a concrete domain ∆I must fulfill all the listed laws and each axiom. �

Syntax Semantics

N NI

C uD CI ∩DI
C tD CI ∪DI
¬C ∆I \ CI
> ∆I

⊥ ∅
∃R.C {x | it exists some (x, y) ∈ RI with y ∈ CI}
∀R.C {x | for all (x, y) ∈ RI it is y ∈ CI}

with N ∈ NC , C,D ∈ C, R ∈ R

Table 2.2: Semantics of ALC concepts

Syntax Semantics

C v D CI ⊆ DI

C ≡ D CI = DI

with C,D ∈ C

Table 2.3: Semantics of ALC axioms

Definition 2.7 (Interpretation, Model, TBox consistency). For a TBox T , such a non-
empty set of individuals ∆I with the mapping of concepts and roles and with the se-
mantics of all axioms in T being fulfilled is called interpretation for T , or also model for
T .

If a TBox T has at least one model, it is called consistent (or also satisfiable). Otherwise
it is called inconsistent.

The consistency checking problem is the problem of determining if a TBox is consistent
or not. �
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2 Preliminaries

Example 2.8. Let us extend the original example a little bit:

NC = {Parent,Father,Grandfather,Male,Female},
NR = {parentOf}.

Then the following axioms are well-formed ALC axioms:

⊥ ≡ Male u Female

Father ≡ Male u Parent

Parent ≡ ∃parentOf.>
Grandfather ≡ Male u ∃parentOf.∃parentOf.>

Given these axioms as the TBox T , an example model is given by Figure 2.1a. Note
that the formal rules stated above also allow the model in Figure 2.1b. In particular, T
is consistent. N

P, F,G

P

P, F

P P

(a) An artificial family tree; Grandfather = G,
Father = F , Parent = P , parentOf is the only
role.

Parent,
Father,

Grandfather

parentOf

(b) A cyclic family bloodline

Figure 2.1: Some family bloodlines. Male individuals are marked by , females are marked by .

Example 2.9. For NC = {X, Y }, consider the TBox

X ≡ Y

> ≡ X u ¬Y

This TBox is inconsistent, because the axiom saying that each individual fulfills X and
¬Y can not be satisfied together with the axiom stating that X and Y are equivalent. N

2.4 Extensions of ALC

ALC is considered to be the most basic description logic, because it contains the basic
Boolean operators u, ¬, ∃. The consistency of an ontology for an extension is defined
analogously to the consistency of an ALC TBox.

Some commonly known extensions relevant for this thesis are defined in this section.
Each of them is named by some character X. ALCX then denotes the extension of
ALC with this particular feature X.

18



2.4 Extensions of ALC

2.4.1 Role Inverses

Definition 2.10 (Syntax of I). In the role inverses extension of a description logic the
set of role expressions is

R′ = R ∪ {R− | R ∈ R},
where R is the set of role expression in the original description logic and R′ the set of
role expressions in the extended one. �

So in case of ALCI, the set complex roles is

R = {R | R ∈ NR} ∪ {R− | R ∈ NR}.

Definition 2.11 (Semantics of I). The semantics of the extended description logic is
compatible to the original one, with one rule added:

(a, b) ∈ R−I ⇔ (b, a) ∈ RI ,
for any pair of individuals a, b ∈ ∆I . �

Example 2.12. Extending the sets NC , NR in Example 2.8 with the role name childOf,
the following is a well-formed ALCI TBox axiom:

Parent ≡ ∃childOf−.>
N

2.4.2 Role Hierarchies

Definition 2.13 (Syntax ofH). In the role hierarchies extension, another type of axioms
are allowed to be phrased: RBox axioms. They describe inclusion relations between the
roles. For some roles R, S ∈ R, expressing that R is a subrole of S is done by the
following axiom:

R v S

�

Definition 2.14 (Semantics of H). The semantics of the extended description logic is
compatible to the original one, with the rule in Table 2.4 added. Given an interpretation
I, it means: for any individuals a, b ∈ ∆I being connected via R, (a, b) ∈ RI , they also
have to be connected via S, i.e. (a, b) ∈ SI . �

Example 2.15. Extending the sets NC , NR from Example 2.12 with the role name
fatherOf, the following is an example ALCH RBox-axiom:

fatherOf v parentOf

It tells: if a is the father of b, then a is also the parent of b. An example for combining
role hierarchies with inverses is given by the following ALCHI RBox axioms:

parentOf− v childOf, childOf− v parentOf

N
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2 Preliminaries

Syntax Semantics

R v S RI ⊆ SI

with R, S ∈ R

Table 2.4

2.4.3 Qualified Number Restrictions

Definition 2.16 (Syntax of Q). In the qualified number restriction extension the set of
concept expressions is

C′ = C ∪ {≥n R.C | R ∈ R, C ∈ C′, n ∈ N0},

where R is the set of role expression and C is the original set of concept expressions. �

Definition 2.17 (Semantics of Q). The semantics of the extended description logic is
compatible to the original one, with the rule in Table 2.5 added. �

Syntax Semantics

≥n R.C {x : #{y : (x, y) ∈ RI , y ∈ CI} ≥ n}

with n ∈ N0, C ∈ C, R ∈ R

Table 2.5

Based on ≥n R.C the concept ≤n R.C is defined as:

¬ ≥n+1 R.C (2.4)

Furthermore, even ∃R.C and ∀R.C can be expressed by ≥:

∃R.C :≡ ≥1 R.C, ∀R.C :≡ ≤0 R.¬C

The advantage of this linkage is, that in description logics including the Q extension it
is sufficient to consider ≥n R.C in case distinctions to cover ∃ and ∀ implicitly.

Example 2.18. Given the sets NC , NR like in Example 2.12, the following is an example
ALCQ TBox axiom:

> ≡≤2 childOf.Parentu ≥2 childOf.Parent

It says, that everybody is the child of at most two parents and is also the child of at
least one parents, i.e. everybody is the child of exactly two parents. N

20



2.5 More about ALCHIQ

2.5 More about ALCHIQ

ALCHIQ and its properties take an important role in the following chapters, soALCHIQ
is considered here in more detail.

Definition 2.19. A concept is in negated normal form (NNF) if negations only occur
directly in front of atomic concepts and only the following operators are used: ∃, ∀, ≥,
≤, t, u, ¬.

Every concept formula can be transformed into an equivalent formula in NNF using the
definition of ∃, ≤, t including the DeMorgan rule in (2.1) on page 16 as identities for
pushing the negation towards the atomic concepts, as well as (2.4) to resolve ¬ ≤n and
¬ ≥n. This mapping is done by NNF : C→ C, defined as

NNF(N) = N, NNF(¬N) = ¬N,
NNF(¬¬C) = NNF(C),

NNF(¬(C tD)) = NNF(¬C) u NNF(¬D),

NNF(¬(C uD)) = NNF(¬C) t NNF(¬D),

NNF(¬(∃R.C)) = ∀R.NNF(¬C),

NNF(¬(∀R.C)) = ∃R.NNF(¬C),

NNF(¬(≤n R.C)) =≥n+1 R.NNF(C),

NNF(¬(≥n R.C)) =≤n−1 R.NNF(C),

for N ∈ NC , C,D ∈ C, R ∈ R and ≤n−1 R.C denoting ⊥ for n = 0. In all other cases,
NNF commutes with the operator, e.g.:

NNF(C uD) = NNF(C) u NNF(D)

�

Definition 2.20. Given a concept C ∈ C, the set of subconcepts or also called subfor-
mulas of C is denoted by Sub(C). Sub : C → ℘(C) maps a concept to the set of its
subconcepts, defined by

Sub(N) = {N}, Sub(¬C) = {¬C} ∪ Sub(C),

Sub(C tD) = {C tD} ∪ Sub(C) ∪ Sub(D), Sub(C uD) = {C uD} ∪ Sub(C) ∪ Sub(D),

Sub(≥n R.C) = {≥n R.C} ∪ Sub(C), Sub(≤n R.C) = {≤n R.C} ∪ Sub(C),

for C,D ∈ C, N ∈ NC , R ∈ R. �

Definition 2.21. For a model I of some ontology with the role names NR, the globalized
relation I is the union of all relations rI ⊆ ∆I ×∆I , r ∈ NR:

xIy :⇔ (x, y) ∈
⋃
r∈NR

rI .

�
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2 Preliminaries

Definition 2.22. A description logic has the tree model property, if the following con-
ditions are equivalent for each ontology O:

(i) O has a model.

(ii) O has a model ∆I with the shape of a tree, i.e. the globalized relation I is a tree
in ∆I .

�

Note that for any description logic, the direction “(i)⇐(ii)” of the equivalence is trivially
true, “(i)⇒(ii)” is the essential direction. ALCHIQ has this property1 [3].

2.6 Reasoning

The basic task on ontologies is inferring information from the given axioms of an ontology,
which is called reasoning. A program that performs reasoning is called reasoner.

There are different types of reasoning tasks, but many of them can be reduced to the
basic problem of TBox and RBox consistency checking. Common reasoning tasks are:

• Check if a given axiom is the consequence of a given ontology.

• Find out all pairs of atomic concepts (A,B) of an ontology with A v B. This is
called classification.

• Check the consistency of a given ontology.

A consistency checker gets NC , NR, a TBox and an RBox and then tells if the given
ontology is consistent.

Many reasoners accept the input ontologies in the OWL format [4] which can be con-
sidered as an extension to ALCHIQ. This very handy because any OWL reasoner can
be used as a consistency checker for ALCHIQ, which will be exploited later.

2.7 Outline of the Thesis

One can use the introduced techniques for modelling different kind of scenarios in a for-
mal way. Many constructs we know from natural speech have an operator in ALCHIQ.
But there are many concepts that can be described in prose with an self-referential
phrase, which can not be adapted to ALCHIQ. In the beginning a grandparent was
defined by this wording:

A grandparent is someone who is the parent of someone who is the parent of
somebody else.

1We do not consider ABox axioms here. When taking an ABox into account, ALCHIQ has the weaker
forest model property only.
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So a grandparent is not just a parent of any parent but the parent of someone who is
the parent of “somebody else”. For example the graph given by Figure 2.1b does not
fulfil the “somebody else” part, as there only is one individual who is both father and
grandfather of himself. To prohibit interpretations like that, we need a formal syntax to
model such concepts.

This can be achieved by using the I-me-construct by Marx [5], which is described in
detail in Chapter 3 as an extension to ALCQ. With that it is possible to remember a
certain point in a formula, go to other points along roles and then refer to the originally
remembered point.

As allowing such a general construct leads to undecidability regarding consistency check-
ing, the investigations after that restrict the usage of the new construct: ALCQme2 is
obtained by only allowing the remembered and referred point to have a distance of at
most two hops via qualified number restrictions. Even with this restriction it is seen
that ALCQme2 still is expressive enough to encode role inverses and role hierarchies as
they are known from ALCHIQ.

On the other hand, it is shown in Chapter 4, that the TBox consistency checking problem
for ALCQme2 can be polynomially reduced to ALCHIQ by exploiting something similar
to the tree model property. As there are consistency checkers for ALCHIQ, this gives
an consistency checker for ALCQme2 implicitly.

The practical point of view is stressed afterwards in Chapter 5. The widespread ontology
format OWL is used to effectively encode an ALCHIQme2 TBox and RBox. The im-
plementation of the reduction can be used to convert such an ALCHIQme2 ontology to
a plain OWL ontology whose satisfiability then can be checked with any OWL reasoner.
Benchmarking the conversion shows that independent from the increasing file size, the
blowup regarding consistency checking time turns out to be nearly unchanged.

Finally, the thesis is concluded by summarizing the main results.
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3 Self-Reference in Description Logics

The aspect of self-reference is implicitly used very often in natural language however,
is immediately not expressible with the description logics considered previously. In
ALCHIQ it is impossible to define the concept of a narcissist:

A narcissist is a person who loves herself.1

So in the model given by Figure 3.1, the informally defined concept of a narcissist holds
exactly at the individuals marked by N .

N

N

N, a
loves

loves

loves

loves

loves

loves

loves

loves

Figure 3.1: A model containing some narcissists and an individual a.

It can be tested manually where N holds and where it does not. When validating a
concept formula C at a certain point in a graph more or less two different types of
checks are done:

• If C is composed by Boolean operators u, t, ¬, it is checked if the subformulas
hold and thus it is known whether C holds at the current point.

• If C is of the kind ∃R.D, we have to look for a R successor where the validation
of D succeeds. Analogously for ∀R.D, we have to validate D at each R successor.

In the latter case, the current point of evaluation changes because of following the R-
link between to points. In common description logics it is not possible to reference the
original point after following the link. Even when having role inverses, we know, the
original point is reachable by an R− link, but not which link it is. But in the extension
of ALC given by Marx [5] this is enabled by adding new constructs: the current point of
evaluation is remembered by an I before following a link with ∃,∀ and is then referable
by a me. In other words, me behaves like a concept that holds only at the point where
the I was evaluated. Using I and me, narcissists can be defined by the concept:

N ≡ I.∃loves.me

1Not implying that a narcissist is necessarily female.
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3 Self-Reference in Description Logics

N holds exactly at those points fulfilling the condition: there is a loves-link to the point
itself.

The difference with ALC is: there is a new concept me from which you can not tell if it
holds at a certain point or not, because it depends on the context. It does not make sense
to ask, where the concept me holds in the model in Figure 3.1. But if the remembered
point by I is e.g. a, then me definitely only holds at a, i.e. me in this case is interpreted
as the set {a}. If another individual is remembered by the I, the interpretation changes
completely. Intuitively I.me holds everywhere but I.¬me nowhere.

A more complex example is the concept of a sibling – a person whose parent has another
child. Assume the roles p and c behave naturally as the roles “parent of” and “child
of”, i.e. assume p is the inverse of c and define a sibling as:

S ≡ I.∃c.∃p.¬me ≡ I.∃p−.∃p.¬me

S holds at those points from which a path first along c ≡ p−, then along p exists that does
not lead to the original point. An example for the sibling concept is given by Figure 3.2,
where individual 2 is a sibling as its parent 1 has another child 3. So individual 3 also
is a sibling, whereas the topmost individual 1 does not have a parent and so is not a
sibling at all. The only child of the parent of individual 4 is 4, so it is not a sibling.

This description even matches the intuition concerning its opposite: the contrary concept
of a sibling – an only child O – can be written as

O :≡ ¬S ≡ ¬I.∃c.∃p.¬me ≡ I.∀c.∀p.¬¬me ≡ I.∀c.∀p.me,

a person whose each parent’s each child is the person herself. In Figure 3.2 individual 4
satisfies O, because the only child of 2 is individual 4. But also individual 1 satisfies O
even though it is not anyone’s child.

O, 1

S, 2 S, 3

O, 4

S, 5

S, 6

S,7

p p

p

p

p

p

Figure 3.2: Example containing the sibling concept S and only children O

3.1 ALCQ with Self-Reference

Now the formal description of an extension of ALCQ which allows self-reference is given.
Originally, Marx [5] extended ALC. The approach here is the straightforward adaption
to ALCQ.
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3.1 ALCQ with Self-Reference

Definition 3.1 (Syntax of ALCQme). Based on ALCQ, the set of concept expressions
C is extended as follows:

C 3 N,me,¬C,C uD, I.C,≥n R.D N ∈ NC , C,D ∈ C, R ∈ R, n ∈ N0

Like in ALCQ, the operators ∃, ∀, t, etc. are implicitly defined in the usual way.

As we already examined, an occurrence of me without the guard of a I does not have
unique meaning. Hence we do not want this to happen in a TBox axiom, which can by
formalized by partitioning concept expressions into open and closed concepts. C ∈ C
is called open if there is a me which is not under the scope of an I; such a me is named
free. Otherwise the concept C is called closed. In detail, open, closed: C → 2, with
open(C) = 1− closed(C), is defined as follows:

closed(N) = 1 for N ∈ NC , closed(I.C) = 1,

closed(me) = 0, closed(¬C) = closed(C),

closed(C uD) = closed(C) ∧ closed(D), closed(≥n R.C) = closed(C).

The set of well-formed TBox axioms contains axioms of the kind

C v D,

where C and D are closed concepts. Also axioms of the form C ≡ D can be expressed
implicitly by stating C v D and D v C. �

As already discussed, I “remembers” the current point of evaluation in I.C so that each
me in C under the scope of this I denotes a concept which only contains the remembered
point. This means that the memorized point needs to be explicitly handled in the
semantics of ALCQme2.

Definition 3.2 (Semantics of ALCQme). For every a ∈ ∆I and C ∈ C the expression
CIa denotes the interpretation of C where a is the remembered point:

⊥Ia = ∅, NIa = NI , (I.C)Ia = {b ∈ ∆I | b ∈ CIb },
(C uD)Ia = CIa ∩DIa , (¬C)Ia = ∆I \ CIa , meIa = {a},

(≥n R.C)Ia = {b ∈ ∆I | #{(b, c) ∈ RI : c ∈ CIa } ≥ n}

for all N ∈ NC , D ∈ C′, R ∈ R. The interpretation for TBox axioms is similar to ALC
and given by Table 3.1. �

Syntax Semantics

C v D CIa ⊆ DIb

with C,D ∈ C, a, b ∈ ∆I

Table 3.1
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3 Self-Reference in Description Logics

Example 3.3. The behaviour of the remembered state is visualized by the example
given in Figure 3.3. For the concept D :≡ I.∃R.∃R.me the interpretation only consists
of {a′, b′}, which is shown by:

meIa′ = {a′}

(∃R.me)Ia′ = {x ∈ ∆I | exists (x, y) ∈ RI with y ∈ meIa′ = {a′}} (b′,a′)∈RI
= {b′}

(∃R.∃R.me)Ia′ = {x ∈ ∆I | exists (x, y) ∈ RI with y ∈ (∃R.me)Ia′ = {b′}} = {a′}

a b cR R a′ b′R

R

Figure 3.3

So a′ ∈ (∃R.∃R.me)Ia′ implies a′ ∈ (I.∃R.∃R.me)Iy for any y ∈ ∆I ; analogously we can
conclude b′ ∈ DIy . The only points where D holds are a′ and b′, because any other point
p ∈ ∆I \ {a′, b′} can not be contained in (∃R.∃R.me)Ip , e.g.:

a 6∈ (∃R.∃R.me)Ia = ∅
c 6∈ (∃R.∃R.me)Ic = {a}

N

Remark. The semantics of “v” is well-defined because for C v D the concepts C,D
must be closed and it holds EIa = EIb for any closed concept E and any a, b ∈ ∆I .

EIa = EIb follows recursively from the structure of complex concepts. Trivially it is
(I.C)Ia = {c ∈ ∆I | c ∈ CIc } = (I.C)Ib and NIa = N = NIb for all C ∈ C, N ∈ NC . These
are the base-cases for closed concepts. As the remembered points a, b are disregarded
and left unmodified by the other constructs, it follows EIa = EIb for any closed concept
E.

Analogous to the consistency checking problem in Section 2.6, the TBox consistency
checking problem for ALCQme is defined as follows:

Given an ALCQme TBox T . Is there any model for T ?

In contrast to the previously discussed decidable description logic ALCHIQ, this prob-
lem is undecidable for ALCme [5]. ALCme equals ALCQme without the extension
quantified number restrictions, so the undecidability also follows for the strictly more
expressive ALCQme.

It turned out that one important criterion for decidability is the maximum number of
qualified number restrictions between a me and its corresponding I. For example this
distance for

I.∃R.∃S.∀T.me
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3.2 Role Inverses in ALCQme2

is 3. But this distance is 2 for the concepts

I.∀R.∃S.I.∀T.me, I.∀R.∃S.me, I.∀R.∃S.(me u ∀T.>).

Let ALCmed, d ∈ N0, be the fragment of ALCme with the maximum distance of at most
d in any concept expression. Initially it was proved that the problem is undecidable for
ALCme8 [5]. Then this was lowered to d = 4, i.e. it is undecidable for ALCme4 [6]. Later
it was shown that ALCme3 is undecidable, and hence ALCQme3, too [7].

Theorem 3.4. Considering ALCmed for d = 0, the decidable description logic ALCQ
is obtained using the identities

I.me ≡ >, I.(¬C) ≡ ¬I.C, I.(C uD) ≡ I.C u I.D, I.N ≡ N for N ∈ NC .

These identities directly result from the semantics definition of ALCQme. �

The question for the maximum 0 ≤ d < 3 that keeps ALCQmed decidable concerning
consistency checking finally was turned out to be d = 2: the decidability of the consis-
tency checking problem for ALCQme2 – implicitly also for ALCQme1 – can be shown
by a reduction to ALCHIQ [8, 9].

So in the following we will focus on ALCQme2, will look at its expressiveness in com-
parison to ALCHIQ, starting with the normalization of ALCQme2 concept formulas.

Definition 3.5. An ALCQme2 formula is considered normalized if it is in NNF and the
I is as close to the atomic concepts as possible. I.e. negations occur only in front of
atomic concepts – analogous to Definition 2.19 with treating me as an atomic concept.
A concept C is put in NNF as described in Definition 2.19 with the additional rule that
both ¬ and NNF commute with I:

NNF(I.C) = I.NNF(C), NNF(¬I.C) = I.NNF(¬C).

Pushing the I as close to the me is achieved by the following mapping:

I.me 7→ >, I.(C ? D) 7→ I.C ? I.D, ? ∈ {u,t},
I.(¬C) 7→ ¬I.C, I.I.C 7→ I.C,

I.E 7→ E, C,D ∈ C, E ∈ NC .

No mapping changes the concept semantics, but after applying these rules, a concept in
NNF is obtained. Furthermore, for each me in the normalized concept, the distance to
its related I is still at most 2, but there is no pair of I and me with distance 0, because
each I appears directly in front of a qualified number restriction. �

3.2 Role Inverses in ALCQme2

In ALCQme2 no role inverses are allowed to be used explicitly. But it is possible to
make two roles interact as inverses to each other. Let R, S ∈ NR be two roles that shall
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3 Self-Reference in Description Logics

be marked as inverses to each other. Then consider the following TBox axiom:

> ≡ I.∀R.∃S.me

It states that for each R link, there always is an S link back, i.e. for any interpretation
I it is:

RI ⊆ (S−)I

Considering the axiom with the roles R and S swapped, you get the TBox Axiom

> ≡ I.∀S.∃R.me,

which supplementary postulates:
SI ⊆ (R−)I ,

which is equivalent to (S−)I ⊆ RI because of the semantics of role inverses.

So both axioms together enforce RI = (S−)I . This directly gives a consistency preserv-
ing reduction from ALCIQ to ALCQme2: for each role R ∈ NR introduce a new role
SR ∈ N ′R, add the TBox axiom

> ≡ I.∀R.∃SR.me u I.∀SR.∃R.me

and replace very occurrence of R− in the original TBox by SR [8].

3.3 Role Hierarchies in ALCQme2

The encoding of role hierarchies in ALCQme2 is very similar. Any RBox axiom of the
form

V v W

can be expressed as a single TBox axiom in ALCQme2 assuming that role inverses
already are encoded as described before. The semantics of “v” requires that for every
interpretation I it holds:

V I ⊆ W I = (S−W )I ,

where SW is the inverse role of W as encoded in the section before. Now the same trick
as for the inverses can be done. Put an TBox axiom for each RBox axiom V v W :

I.∀V.∃SW .me

It says: if there is a V -successor then there is an SW -link back to the original node. I.e.
if there is an V -link between two nodes, then there is also a W -link. So ALCHQme2 –
and also ALCHIQ – can be reduced to ALCQme2 [8].

Example 3.6. Consider the following definition of a barber, which may be known from
other fields of mathematics in a similar way.
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A barber is someone who shaves those that do not shave themselves. Every-
one is shaved – by himself or by a barber.

This description can be adapted directly to an ALCQme2 TBox. Let B be the concept
of a barber, S the role standing for “shaves” and R standing for “shaved by”. We first
have to let R and S as inverse roles:

> ≡ I.∀S.∃R.me, > ≡ I.∀R.∃S.me

A barber should only shave people that do not shave themselves and secondly, everybody
is shaved by exactly one person, by himself or by a barber:

B ≡ ∀S.¬I.∃S.me

> ≡ ≥1 R.> u ≤1 R.>
> ≡ I.∀R.(me tB)

Given the ALCQme2 TBox T with these axioms. Is the concept B satisfiable, i.e. is
there a model I for T with BI 6= ∅? The answer is yes, because there may be two
barbers shaving each other as it is illustrated by Figure 3.4. N

B B

S

S

R

R

Figure 3.4: A minimal model for the barber TBox

Example 3.7. In other fields, the original barber example normally is known as a
contradictory example. Consider the previous TBox with the following axiom added:

⊥ ≡ B u I.∃R.(B u ¬me)

This new TBox T ′ explicitly forbids the model in Figure 3.4 by saying: there is no barber
that is shaved by a barber that is not himself. So the consideration whether the barber
shaves himself or not leads to the contradiction making the concept unsatisfiable. This
means it is BI = ∅ for any model I. N
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In this chapter a transformation is provided that maps an ALCQme2 TBox T to an
ALCHIQ TBox T ′ with the property: T is consistent iff T ′ is consistent. TheALCHIQ
TBox T ′ will be such that it only accepts tree models. With this transformation, a
consistency checker for ALCHIQ is given implicitly.

In this chapter we assume that ∀ and ∃ are expressed using ≥ and ≤, all formulas are
in NNF and each I is being pushed as close as possible to each me under its scope,
according to Definition 3.5. Since the encoding is complex, we start with the simpler
case of encoding ALCHIQ in ALCHIQ itself.

4.1 Encoding ALCHIQ in itself

As an introduction to the idea of reduction of TBoxes, this section will provide a re-
duction of ALCHIQ to ALCHIQ itself. Knowing that reducing a problem to itself is
trivial in general, this reduction only is given to show the basic reduction steps, which
will be extended for the reduction of ALCQme2 later.

4.1.1 Subformula Construction

To be able to encode the ALCQme2 axioms later, the basic idea is to add new concepts
for every subformula contained in a complex concept. Then the relationship between
these concepts are expressed with ALCHIQ axioms to simulate the behaviour of the
original concepts. This kind of transformation is now described for an ALCHIQ TBox,
which operates on ALCHIQ subformulas. From now on we assume all concept formulas
to be in NNF. So for C ∈ C, its negation ¬C stands for the negation in NNF, i.e. for
NNF(¬C).

Definition 4.1. For a set Σ of ALCHIQ concepts, the closure Cl(Σ) is the small-
est set extending Σ, consisting concepts that is closed under negation and subformula
construction. Cl(Σ) is constructed explicitly by

Cl(Σ) :=
⋃
σ∈Σ

{x | x ∈ Sub(σ)} ∪ {¬x | x ∈ Sub(σ)},

where Sub corresponds to the set of subformulas for a given concept, as defined by
Definition 2.20. For a TBox T , Cl(T ) is the closure of the set of concepts occurring in
T . �
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The subformula reduction of an ALCHIQ TBox T constructs a new TBox T ′ from
scratch, containing atomic concepts for each subformula from T ,

N ′C := {AD | D ∈ Cl(T )},

while keeping the role names unchanged: N ′R = NR. For every axiom C v D in T the
corresponding axiom added to T ′:

AC v AD

Of course we have to add more axioms to T ′, to ensure that former complex concepts
behave like their name suggests – ACtD shall interact with AC and AD just like C tD
did with C and D. In general we want a one-to-one correspondence of the models for T
and for T ′:

1. If I is a model for T , then there is a model I ′ for T ′ with

∆I
′
= ∆I (4.1)

RI
′
= RI for each R ∈ N ′R = NR (4.2)

AI
′

C = CI for each C ∈ N ′C (4.3)

2. If I ′ is a model for T ′, then there is a model I for T such that (4.1), (4.2) and
(4.3) are fulfilled.

To get both directions met, the AC concepts have to be given a meaning based on the
structure of C. Effectively the semantics definition of ALCHIQ is encoded again for
every single concept AC ∈ N ′C by adding the following axioms to T ′:

A> ≡ >, A⊥ ≡ ⊥, ¬AC ≡ A¬C

ACtD ≡ AC t AD ACuD ≡ AC u AD
A≥nR.C ≡≥n R.AC A≤nR.C ≡≤n R.AC

All equations are the intuitive adaption of the semantics of the operators. So there is a
one-to-one correspondence between models for T and T ′. In particular T ′ is consistent
iff T is consistent.

Example 4.2. Consider NC = {C,D}, NR = {R} and the TBox T consisting of one
axiom:

D v ∃R.(C tD)

Then N ′C contains these formulas:

A> AC AD ACtD A∃R.(CtD)

A⊥ A¬C A¬D A¬Cu¬D A∀R.(¬Cu¬D)

The transformed TBox T ′ has the following axioms. For every pair of axioms ¬AC ≡ A¬C
and ¬A¬C ≡ AC , one of them is omitted because it is apparently redundant.
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AD v A∃R.(CtD) A> ≡ > A⊥ ≡ ⊥
ACtD ≡ AC t AD A¬Cu¬D ≡ A¬C u A¬D ¬AC ≡ A¬C

A∃R.(CtD) ≡ ∃R.(AC t AD) A∀R.(¬Cu¬D) ≡ ∀R.(A¬C u A¬D) ¬AD ≡ A¬D

¬ACtD ≡ A¬Cu¬D ¬A∃R.(CtD) ≡ A∀R.(¬Cu¬D)

N

4.1.2 Tree Model Property

Now the tree model property of ALCHIQ is exploited; it is a property which is featured
by many decidable description logics and which lets them stay decidable under many
extensions [10]. As already stated along with Definition 2.22, ALCHIQ has this prop-
erty. For the encoding of ALCQme2 later, we will heavily use some similar property of
ALCQme2.

Example 4.3. Consider an ALCHIQ TBox T consisting of one axiom:

> v ∃R.>

T is satisfiable; an example model is given in Figure 4.1a, which is not a tree. The axiom
says: each point has at least one R-successor. So there can not be a finite tree shaped
model for T , but there are some infinite models, e.g. the natural numbers ∆I = N with
the ordinary successor relation: RI = {(x, x + 1) | x ∈ N}. This infinite tree with root
1 is indicated by Figure 4.1b. N

R

R

R

R · · ·
R R R

· · ·
R R R

c c c

· · ·
R R R

f f f

(a) (b)
(c) The dashed relation de-

scribes root
(d) Replacing c by f− in Fig-

ure 4.1c

Figure 4.1: Different models for > v ∃R.>

Because of the tree model property, we can enforce an ALCHIQ TBox to have only
tree shaped models, without changing the consistency of the TBox. This is done by
adding an additional role c, which is intended to point from a node to its children, i.e.
(x, y) ∈ cI iff y is a child of x. As requested by Definition 2.4, c− has to be functional,
which means that each point must be the child of at most one node. This is achieved
with an additional TBox axiom:

> v≤1 c
−.>
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The globalized relation I, given by Definition 2.21, of each model has to be forced to
be a tree. This is done by only allowing the existing roles to connect nodes with their
children in the tree. To achieve this formally, an RBox needs to be introduced, to which
the following axiom is added for each role r ∈ NR:

r v c

To give that tree a root, the concept ¬∃c−.> has to hold at some point in the model.
The typical approach for enforcing a concept to not be empty, is to introduce another
role root and add another TBox axiom:

> v ∃root.¬∃c−.>

Strictly speaking, once root is added, the globalized relation I is not tree-shaped any-
more. But ignoring root, the remaining relation cI is a forest, i.e. a collection of trees,
each with a root fulfilling ¬∃c−.> and ∃root−.>. A model for the transformed version
of Example 4.3 is given by Figure 4.1c. All in all we can enforce an ALCHIQ TBox
to have only tree shaped models – ignoring root regarding the globalized relation – by
setting the role names to

N ′R := NR ∪̇ {c, root}

and extending the TBox as well as the RBox as described above.

If a tree-shaped model exists for the original TBox, then there is also a model for the
new TBox with the new role root pointing to each tree’s root. On the other hand, an
inconsistent TBox still is inconsistent after this transformation, because we only added
more and more axioms. So the transformation is consistency preserving.

To improve the readability of the formulas later we will replace the role pointing from a
node to all its child nodes by the inverse role f , which points to each node’s father:

f := c−, f− := c

As this can be grasped as just renaming roles, the resulting transformation is still consis-
tency preserving. Deploying the entire transformation on the TBox given by Example 4.3
leads to a TBox with the example model in Figure 4.1d.

4.2 Encoding ALCQme2 in ALCHIQ

The logic ALCQme2 does not have the tree model property. This can be seen, because
both the ALCQme2 axioms

> v I.∃R.me and > v I.∃R.(¬me u ∃R.me)

are satisfiable but do not have a tree model. Thus ALCQme2 can not have the tree
model property. But a slightly weaker criterion of a quasi-tree model property can be
found for ALCQme2.
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Definition 4.4. A relation S ⊆ X2 is a quasi-tree with root r if there is a tree R ⊆ X2

with root r and R ⊆ S ⊆ R ∪R−1 ∪ IdX .

I is a quasi-tree model with root r if its globalized relation is a quasi-tree with root
r. �

Informally speaking, a quasi-tree is a tree extended with self-loops and links to the
father, like the example given by Figure 4.2.

Figure 4.2: An example quasi-tree

Theorem 4.5 (Goŕın and Schröder [8]). If C is a satisfiable closed ALCQme2 concept,
then there exists a quasi-tree model that satisfies C at its root. �

Let T be an ALCQme2 TBox to be checked for satisfiability. We know that if T is
consistent then there must be a quasi-tree model for T . This allows a transformation
to an ALCHIQ TBox T ′ following the same ideas as in Section 4.1 combined with the
additional effort needed to encode the quasi-tree:

• Force the model to be a tree

• Encode self-loops of R as new concepts 	R

• Encode uplinks of R as new concepts ↑R
• Encode the behaviour of ≥,≤,t,u,¬ as axioms in ALCHIQ

With the concepts 	R and ↑R, the quasi-tree is reduced to a simple tree, which allows
us to adapt the transformation from Subsection 4.1.2 to ALCQme2. Knowing that the
model always is a tree, we can encode the ALCQme2 semantics in ALCHIQ using the
subformula construction similar to Subsection 4.1.1. The subformulas of an ALCQme2

concept are defined as follows:

Definition 4.6. For concepts C and D, C(D) is the concept obtained by replacing every
free occurrence of me outside the scope of a qualified number restriction in C by D. �

E.g. (meu ≤4 R.me)(D) is Du ≤4 R.me because the second me is under the scope of
“≤4”.

Definition 4.7. For a set Σ of closed ALCQme2 concepts, the closure Cl(Σ) is the
smallest set extending Σ consisting of concepts, normalized according to Definition 3.5,
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that is closed under negation, subformulas and – in addition to ALCHIQ – pseudo-
subformulas; i.e., if C ∈ Cl(Σ) and D is a subformula of C, then D(>) and D(⊥) are in
Cl(Σ) too. Aside from the subconcepts specified by Sub : C→ ℘(C) in Definition 4.1, it
is

Sub(I. ≥n R.C) = {I. ≥n R.C} ∪ Sub(C(>)) ∪ Sub(C(⊥)),
Sub(I. ≤n R.C) = {I. ≤n R.C} ∪ Sub(C(>)) ∪ Sub(C(⊥)),

Sub(≥n R.C) = {≥n R.C} ∪ Sub(C(>)) ∪ Sub(C(⊥)),
Sub(≤n R.C) = {≤n R.C} ∪ Sub(C(>)) ∪ Sub(C(⊥)),

i.e. ≥n R.C is not a subformula of I. ≥n R.C. Because of that definition, any free
occurrence of me in an open concept C ∈ Cl(Σ) is guarded by an qualified number
restriction.

It will be important to distinguish between open and closed subformulas, so Cl∗(Σ)
denotes the set of closed concepts in Cl(Σ). For the sake of simplicity Cl and Cl∗ denote
the closure for the concepts in T . �

All required definitions for the actual transformation are given now. The result of this
encoding of T defines an ALCHIQ ontology – with the TBox T ′, the RBox R′, the role
names N ′R, and the concept names N ′C . Additionally to the roles R1, . . . , RK already
in NR we insert a role f ∈ N ′R, whose interpretation shall behave like the “father of”
relation in a tree.

T ′ 3 > v ≤1 f.> (4.4)

R′ = {R−1 v f, . . . , R−1 v f} (4.5)

So each individual in the model has at most one father. Due to (4.5) the roles in NR are
only allowed to connect neighboured nodes within the tree given by f . So the globalized
relation still is a tree (i.e. not a true quasi-tree). When doing this limitation e.g. for
Figure 4.2 we will lose the self-loops and uplinks and get the tree shown in Figure 4.3.

Figure 4.3: Figure 4.2 as a tree without self-loops or uplinks.fI is the dashed relation.

To be able to encode the semantics of ALCQme2, more concepts are needed to indicate
which node stands for me. Because of the quasi-tree model property, there are very few
possibilities for the remembered node. So the set of atomic concepts contains all sub-
formulas Cl(T ) annotated with the information of whether there is a node remembered
by I and if yes, which one it is:

A(T ) = {A`:C | ` ∈ L,A ∈ Cl(T )}, L = {∗, ∗∗, f∗, ∗f}

In the following we will add TBox axioms to enforce the behaviour given by Table 4.1
of the concepts in A(T ). E.g. we want Af∗:C to hold at a node, iff C holds here when its
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father has been remembered by I. So in the end, for any quasi-tree-shaped interpretation
I for T , the contexts should allow an interpretation J for T ′ with ∆I = ∆J , fulfilling:

x ∈ (A∗:C)J ⇐⇒ x ∈ CIz for any z ∈ ∆I

x ∈ (A∗∗:C)J ⇐⇒ x ∈ CIx
x ∈ (Af∗:C)J ⇐⇒ x ∈ CIy with (x, y) ∈ fJ
x ∈ (A∗f :C)J ⇐⇒ y ∈ CIx with (x, y) ∈ fJ

Note that (x, y) ∈ fJ says both that x has a father and y is that uniquely determined
father. E.g. the last condition says that we want A∗f :C to hold at a node, iff remembering
this node as I implies that C holds at its father.

` Remembered node Node where C would hold in ALCQme2

∗ does not matter the closed concept C holds here.
∗∗ this node this node
f∗ the father node this node
∗f this node the father node

Table 4.1: Behaviour of subformula concepts A`:C ∈ A(T )

We say that A`:C describes C in the context `. It obviously does not make sense to
consider open concepts in the ∗ context, so the set L(C) of possible contexts for a
concept C is defined as:

L : C→ ℘(L), L(C) :=

{
{∗, ∗∗, f∗, ∗f}, if C is closed,

{ ∗∗, f∗, ∗f}, if C is open.

As a tree has neither self-loops or uplinks to the father, we have to encode the presence
or absence of those in extra concepts for each role:

B(T ) = {	R| R ∈ NR} ∪ {↑R| R ∈ NR}

We want 	R to represent an R-self-loop and ↑R an uplink. The latter is only possible if
a node has a father at all, so the following axiom is added to T ′ for each R ∈ NR:

↑Rv ∃R.>

The two sets A(T ) and B(T ) form the concept names N ′C = A(T ) ∪̇ B(T ). Taking
the quasi-tree in Figure 4.2 and encoding it as a tree using the concepts in B(T ) gives
Figure 4.4.

Each TBox axiom B v C from T is adapted to the axiom

A∗:B v A∗:C
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	R

↑R

↑R,	R

	R

Figure 4.4: Encoding Figure 4.2 as a tree and annotating it with axioms from B(T )

in T ′. But to ensure that the concepts of the form A∗:B behave like the original concept
B in T , its semantics is encoded by adding the following axioms to T ′ for all concepts
C ∈ Cl.

A`:⊥ ≡ ⊥ for ` ∈ L, (4.6)

A`:> ≡ > for ` ∈ {∗, ∗∗}, (4.7)

⊥ ≡ A`:C u A`:¬C for ` ∈ L(C), (4.8)

> ≡ A`:C t A`:¬C for ` ∈ {∗, ∗∗} ∩ L(C), (4.9)

∃f.> v A`:C t A`:¬C for ` ∈ {f∗, ∗f}. (4.10)

It is clear that we want A`:⊥ to hold nowhere. As there can not be a node in ALCQme2

where both C and ¬C, for C ∈ Cl hold, we also want A`:C and A`:¬C not to hold at the
same node. In contrast to that, the positive statements can only be stipulated if the
context allows it: the root node of the tree does not have a father, so A∗f :C or Af∗:C
should not hold there for any concept C. So (4.7) and (4.9) do not cover ∗f , f∗. But
at any other node in the tree exactly one of them must hold to ensure that the counting
for qualified number restrictions later is done correctly. Therefore (4.10) makes exactly
one of A`:C and A`:¬C hold if there is a father, i.e. if the node is not the root.

If concepts are composed with u, t, the correct behaviour is enforced by:

A`:CtD v A`:C t A`:D, A`:CuD v A`:C u A`:D (4.11)

Here, only one direction of the implication – “v” instead of “≡” – is added, because
for contexts ` ∈ {f∗, ∗f} both A`:CtD and A`:¬(CtD) do not hold at the root. Anywhere
else in the tree, the other direction “w” is implicitly added for the concept A`:¬(CtD) =
A`:¬Cu¬D, because NNF(¬(C tD)) also is in Cl(T ) – it is closed under NNF negation.
The axiom added for A¬(CtD) leads to the following chain of implications at any point
with a father:

A¬(CtD) = A¬Cu¬D v A¬C u A¬D
⇒ ¬A¬Cu¬D w ¬(A¬C u A¬D)

(4.10)⇒ ACtD w (¬A¬C t ¬A¬D) ≡ (AC t AD)

So the “v” is sufficient in (4.11).

Having the rules for Boolean operators within a context encoded, the next step is to
connect the semantics between those contexts by adding the following axioms to T ′:

A`:C v A∗:C for ` ∈ {∗∗, f∗}, C ∈ Cl∗, (4.12)
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which says: for a closed concept, the remembered state – whether it is the father (` = f∗)
or the node itself (` = ∗∗) – does not matter, it has to hold here (` = ∗). If a closed
concept holds for the context ∗f , this means it has to hold at the father:

A∗f :C v ∃f.A∗:C for C ∈ Cl∗. (4.13)

The only missing operator which has not been translated yet is the qualified number
restriction “≥”. This requires more effort because at the counting, the possible self-loops
and uplinks have to be taken into account. The main idea is to transform a concept
≥n R.C to more or less ≥n−d R.C where d has to be chosen depending whether an
R-self-loop or an R-uplink is present and C holds at these R-successors. Therefore, the
following helper construct is defined:

ξ≥n

R (C1, C2, C3) :=
l

 (↑R uC1) u (	R uC2) → ≥n−2 R.C3

(↑R uC1) ↔ ¬(	R uC2) → ≥n−1 R.C3

¬(↑R uC1) u ¬(	R uC2) → ≥n−0 R.C3


ξ≤n

R is defined analogously by replacing ≥ by ≤ in the given definition. A formula
≥n−m R.C3 with m > n is treated as >, ≤n−m R.C3 as ⊥. So ξ≥n

R holds at those nodes
which have at least n R-successors, distributed over these nodes:

• The father if C1 holds here.

• The node itself if C2 holds here.

• Each child if C3 holds at the child.

Depending how many “virtual” R-successors – self-loop or uplink – fulfill the required
concept, we need 1 or 2 successors less.

As all concepts are normalized, I only can occur in front of a qualified number restriction.
If a concept I. ≥n R.C holds at a node – i.e. with context ∗ – there must be at least n
R-successors in those:

• The father, i.e. if C(⊥) holds here with context ∗f . All top level occurrences of
me have to replaced by ⊥, because the context is the father with the child node
remembered by the I.

• The node itself, i.e. if C(>) holds here with context ∗∗. In that case me has to be
replaced by > because both the node of interest and the remembered node is the
node itself.

• Each child, i.e. if C(⊥) holds at the child with context f∗. So me has to be replaced
by ⊥ because the node of interest is a child and the remembered node is the father
(not the child itself).

The consideration for the formula ≥n R.C in the context ∗ is the same, i.e. it is the
case where the node does not need to be remembered at all. So the only difference
to I. ≥n R.C is that C is closed and so replacing the top level me does not have any
effect. So the following axiom is added to the ALCHIQ TBox T ′ for both A∗:I.≥nR.C
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and A∗:≥nR.C as well as an analogous axiom for “≤”:

A∗:(I.)≥nR.C v ξ≥n

R (A∗f :C(⊥), A∗∗:C(>), Af∗:C(⊥)), (4.14)

A∗:(I.)≤nR.C v ξ≤n

R (A∗f :C(⊥), A∗∗:C(>), Af∗:C(⊥)), (4.15)

Analogously to (4.11) only the direction “v” is needed. Note that by replacing all
top level mes, the resulting concept C(?), ? ∈ {>,⊥}, is again in Cl, i.e. each free me
again is guarded by some qualified number restriction. So we do not need to handle the
subformula me in any context. But we have to handle qualified number restrictions that
may occur in such a concept C. Those qualified number restrictions at level two have to
be treated depending on the context – the remembered node and the node of interest.

If the remembered state equals the state where the concept should hold – context ∗∗ –
then Figure 4.5a shows for A∗∗:≥nR.C , where to check for which concept during counting
of R-successors: as usual RI is symbolized by the black arrows, fI by the dashed ones.
We now have to count how many R-successors fulfilling C there are, by taking the
remembered node into account as follows.

If there is an R-uplink, then the father only has to be counted if A∗:C(⊥) holds there.
We replace me by ⊥ because the central node is remembered, i.e. the R-uplink only is
counted if ∃f.A∗:C(⊥) holds at the evaluation point of ≥n R.C.

A∗∗:≥nR.C v ξ≥n

R (∃f.A∗:C(⊥), A∗:C(>), A∗:C(⊥)) for ≥n R.C ∈ Cl, (4.16)

A∗∗:≤nR.C v ξ≤n

R (∃f.A∗:C(⊥), A∗:C(>), A∗:C(⊥)) for ≤n R.C ∈ Cl. (4.17)

The left-hand side describes a term that already was under and I. ≥ or I. ≤, so C is
below two qualified number restrictions. As me occurs only with the nesting level of at
most 2, we can infer that C(>) and C(⊥) are closed concepts, which allows the usage
of context ∗ on the right-hand side.

A∗:C(⊥)

A∗:C(>), ↑R

A∗:C(⊥) A∗:C(⊥)

· · ·

(a) Where to check for which concept occur-
rences when evaluating A∗∗:≥nR.C at the
central node.

A∗:C(>)

A∗:C(⊥), ↑R

A∗:C(⊥) A∗:C(⊥)

· · ·

(b) Where to check for which concept occur-
rences when evaluating Af∗:≥nR.C at the
central node.

Figure 4.5

Given the same situation in context f∗, only one difference emerges: the remembered
state is the father and not the node where Af∗:≥nR.C should hold. So we have to replace
me by > in C when checking if we have to count the R-uplink and have to replace it
by ⊥ elsewhere. Figure 4.5b shows visually where to check for which concept. So the
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counting is done by adding these TBox axioms:

Af∗:≥nR.C v ξ≥n

R (∃f.A∗:C(>), A∗:C(⊥), A∗:C(⊥)) for ≥n R.C ∈ Cl, (4.18)

Af∗:≤nR.C v ξ≤n

R (∃f.A∗:C(>), A∗:C(⊥), A∗:C(⊥)) for ≤n R.C ∈ Cl. (4.19)

The counting for the last remaining case ∗f is different because we have to count the
R-successors of the father at the child node:

A∗f :≥nR.C v ϑ≥n

R (C) for ≥n R.C ∈ Cl, (4.20)

A∗f :≤nR.C v ϑ≤n

R (C) for ≤n R.C ∈ Cl, (4.21)

where ϑ≥n

R (C) (and ϑ≤n

R (C) accordingly) is replaced by:

l


(∃R−.> u (A∗:C(>) u ¬A∗:C(⊥))) → ∃.fξ≥n−1

↑R (C)

(¬∃R−.> t (A∗:C(>) ↔ A∗:C(⊥))) → ∃.fξ≥n+0

↑R (C)

(∃R−.> u (¬A∗:C(>) u A∗:C(⊥))) → ∃.fξ≥n+1

↑R (C)


where ξ≥n

↑R (C) stands for ξ≥n

R (∃f.A∗:C(⊥), A∗:C(⊥), A∗:C(⊥)). The following cases have to
be distinguished:

• If the current node is an R-successor of its father, then it might happen that the
current node is not counted as a valid R-successor fulfilling concept C, although
C actually holds here with me standing for this node.

This case can be detected if C(>) holds here but C(⊥) does not: Then this node
actually is a valid R-successor but the father will not recognize it properly. The
fixup for this is to tell the father to require one R-successor less.

This happens e.g. for C = me.

• If the current node is not reachable via R from its father, then the counting of
R-successors is not affected by the current node at all. It’s also unaffected if the
value of C is independent from the state of me.

This happens for example if C is a closed concept.

• The last case is the inverse case of the first one: if the current point is reachable via
R by the father, but C only would not hold here for me representing the current
node, then the father would count it as an R-successor due to me getting replaced
by ⊥. But actually the current node should not be counted because C(>) does
not hold here. n+ 1 counterbalances this miscounting.

This happens if me is negative in C, e.g. for C = ¬me.

With these axioms given as the ALCHIQ-TBox T ′ and RBox R′, the satisfiability of
T is equivalent to the satisfiability of the following concept which – if it holds at all –
will hold at the root of the tree:

B ≡ ¬∃f.> u
l

C∈Cl\Cl∗

(¬Af∗:C u ¬A∗f :C).
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If this concept is satisfiable, then there is a model fulfilling T ′ and R′ and being shaped
as a tree with a root – a node without a father – where the contexts f∗ and ∗f do not
hold, as they do not make sense at the root.

To ensure the non-emptiness of this root concept B, the trick known from Subsec-
tion 4.1.2 is applied: introduce a new role root ∈ N ′R and add the TBox axiom:

T v ∃root.B

Given an ALCQme2 TBox T , we have just created a new ALCHIQ TBox T ′ and RBox
R′ as described using the concept names N ′C and role names N ′R = NR ∪̇ {f, root}. In
short, the axioms for the simple Boolean operators, for the roles R, for 	R, ↑R and those
listed in Table 4.2 are added to T ′.

Axiom for each

A`:C v A∗:C ` ∈ {∗∗, f∗}, C ∈ Cl∗ (4.12)
A∗f :C v ∃f.A∗:C C ∈ Cl∗. (4.13)

A∗:(I.)≥nR.C v ξ≥n

R (A∗f :C(⊥), A∗∗:C(>), Af∗:C(⊥)) (I.) ≥n R.C ∈ Cl∗ (4.14)

A∗:(I.)≤nR.C v ξ≤n

R (A∗f :C(⊥), A∗∗:C(>), Af∗:C(⊥)) (I.) ≤n R.C ∈ Cl∗ (4.15)

A∗∗:≥nR.C v ξ≥n

R (∃f.A∗:C(⊥), A∗:C(>), A∗:C(⊥)) ≥n R.C ∈ Cl (4.16)

A∗∗:≤nR.C v ξ≤n

R (∃f.A∗:C(⊥), A∗:C(>), A∗:C(⊥)) ≤n R.C ∈ Cl (4.17)

Af∗:≥nR.C v ξ≥n

R (∃f.A∗:C(>), A∗:C(⊥), A∗:C(⊥)) ≥n R.C ∈ Cl (4.18)

Af∗:≤nR.C v ξ≤n

R (∃f.A∗:C(>), A∗:C(⊥), A∗:C(⊥)) ≤n R.C ∈ Cl (4.19)

A∗f :≥nR.C v ϑ≥n

R (C) ≥n R.C ∈ Cl (4.20)

A∗f :≤nR.C v ϑ≤n

R (C) ≤n R.C ∈ Cl (4.21)

B ≡ ¬∃f.> u
l

C∈Cl\Cl∗

(¬Af∗:C u ¬A∗f :C)

T v ∃root.B

Table 4.2: The main axioms at a glance

Because of the quasi-tree model property of ALCQme2 and of having implemented the
ALCQme2 semantics specialized in a quasi-tree in ALCHIQ, one can show

T is consistent ⇐⇒ T ′ is consistent.

The basic arguments for the proof by induction over the formula structure have been
sketched when introducing the new concepts and axioms. In other words, a consistency
preserving reduction from ALCQme2 to ALCHIQ has been provided.

4.3 Optimizations of the Translation

In order to minimize the number of new concept names, some optimizations are done
during the creation of new atomic concepts in the actual implementation of the reduction.
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It concerns the creation of concepts of the kind A`:C for every pseudo-subformula C ∈ Cl
and every context ` ∈ L = {∗, ∗∗, f∗, ∗f}. So the mapping A : Cl × L → N ′C ∪̇ {>,⊥}
maps each C ∈ Cl to an atomic concept for some context, while trying to keep the
number of new context names as low as possible. It is implemented as follows:

A(`, C) =



 error if open(C) ∧ (` = ∗)
C if C ∈ NC ∧ (` ∈ {∗, ∗∗, f∗})
A(∗, C) if closed(C) ∧ (` ∈ {∗∗, f∗})
> if C = > ∧ (` ∈ {∗, ∗∗})
⊥ if C = ⊥
A`:C else

So instead of writing A`:C in all the axioms in the transformation the term A(`, C) has
to be put, which inserts an normalized concept name. Let us look at the cases and see
why the mapping is correct:

• If C is open, i.e. it contains an unguarded me, then the ∗-context does not make
any sense. So at any point the transformation must not create such a concept in
∗. So the implementation just throws an error.

• If C is an atomic concept in the original ontology, then the remembered node does
not matter, i.e. the contexts ∗, ∗∗, f∗ do not have any different meaning, so we
only use the original concept name C for all of them.

• If C is a closed concept, then the remembered node does not matter. So the
number of new concept names is kept smaller by using one concept name A∗:C for
all concepts in {∗, ∗∗, f∗}.

• Instead of telling in (4.7), that A∗:> and A∗∗:> should hold everywhere, both con-
cepts directly can be replaced by >.

• Analogously, instead of putting (4.6), all concepts A`:⊥, ` ∈ L, are replaced by ⊥.

The replacement by A(`, C) also enables the minimization of the generated axioms and
the formulas in them. Beside reducing the file size this also improves the readability of
the formulas. The following identities are applied recursively on the formulas:

C u > 7→ C C u ⊥ 7→ ⊥ C t ⊥ 7→ C C t > 7→ >
≥0 R.C 7→ > ≥n′ R.⊥ 7→ ⊥ ≤n R.⊥ 7→ >

with C ∈ C, R ∈ R, n′ ≥ 1, n, n′ ∈ N0. The mappings for u and t apparently map
the formulas to equivalent ones. The replacement for quantified number restrictions are
also equivalent to the original formula because there are always at least 0 R-successors
fulfilling C; and there are never more than 0 R-successors fulfilling ⊥ or in other words
there are at most n R-successors fulfilling ⊥ for any n ∈ N0.
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This chapter describes the implementation of an ALCHIQme2 consistency checker using
the encoding of role inverses and hierarchies in Chapter 3 and the reduction to ALCHIQ
discussed in Chapter 4. When dealing with ontologies in practice, the most widespread
format is the Web Ontology Language (OWL). So there are already reasoners which can
check the consistency of an OWL ontology.

Instead of defining an ontology format with self-reference from scratch, it is more pro-
ductive to extend OWL with self-reference. OWL then can be used as an container for
ALCHIQme2 and ALCQme2 ontologies and as the input format for the reasoning.

As we did not need a full consistency checking algorithm but only a consistency pre-
serving reduction to ALCHIQ, further steps have to be done: we need a consistency
checker for ALCHIQ ontologies. OWL is strictly more expressive than ALCHIQ, so
the solution is to put the resulting TBox into an OWL ontology and check its consis-
tency by an OWL reasoner. Therefore the Hermit OWL Reasoner [11] is used, which is
licensed under the GNU General Public License v3.

The implementation of the main reduction from OWL ontologies with self-reference to
plain OWL ontologies, which accords to the transformation fromALCQme2 toALCHIQ,
is now discussed. The implementation is called i-me-owl.

5.1 OWL Ontologies

As defined by W3C [12] there are many representation formats for OWL ontologies. The
implementation of this work uses the reference implementation OWL API [13] and thus
works with all official representation formats. The relevant parts of the human readable
format – called Functional-Style Syntax [14] – is defined now, because it will be used for
describing OWL ontologies in the following. For a more detailed description see Hitzler
et al. [12]. The syntax consists of expressions of the form

NAME( ARGUMENTS ...)

So each entity has a name followed by a list of whitespace separated arguments; the
list is put in parentheses. With that in mind the syntax is described intuitively by the
examples.

An OWL ontology is an accumulation of axioms, each of them talking about roles and
concepts. In the context of OWL ontologies, concepts are called classes and roles are
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called object properties. The name of such a class or object property is a full URI
followed by # and the actual name. To simplify typing class names, the URI can be
abbreviated by prefixes. So e.g. by defining a prefix p

Prefix(p:=<http://www8.cs.fau.de/yet-another-example.owl#>)

the class name p:SomeClass stands for:

http://www8.cs.fau.de/yet-another-example.owl#SomeClass

The default prefix owl contains the classes Thing and Nothing which correspond to
the concepts > and ⊥. In the following we assume the empty prefix to be set to some
reasonable prefix:

Prefix(:=<http://www8.cs.fau.de/yet-another-example.owl#>)

So an atomic concept C can be adapted to the OWL class :C and a role R to the
OWL property :R. The TBox axioms “≡” and “v” are called EquivalentClasses and
SubClassOf, i.e. an axiom like

A ≡ >

is adapted to:

EquivalentClasses( :A owl:Thing )

For each ALCHIQ concept constructor there is an analogous construct in OWL. E.g.
∃R.(D t ¬C) is expressed in OWL as:

ObjectSomeValuesFrom( :R

ObjectUnionOf( :D

ObjectComplementOf( :C )))

The full mapping from ALCHIQ concept constructors to OWL class constructors is
given by Table 5.1. The reverse mapping of an OWL ontology to ALCHIQ constructs
as unicode text also has been implemented for debugging purposes. E.g. if the actual
content of the ontology is as follows.

Prefix (:=<http :// example.com/yet -another -example.owl#>)

Ontology( <http :// example.com/yet -another -example.owl >

SubClassOf( :A ObjectComplementOf( :B ))

SubClassOf( :B ObjectComplementOf( :C ))

SubClassOf( :C ObjectIntersectionOf(ObjectComplementOf (:A)

ObjectComplementOf (:B)))

)

48



5.2 OWL Ontologies with Self-Reference

Then the pretty printer gives the following:

A ⊆ ¬B
B ⊆ ¬C
C ⊆ ¬A u ¬B

Notion ALCHIQ construct OWL construct Parameters

Top > owl:Thing

Bottom ⊥ owl:Nothing

Negation ¬C ObjectComplementOf (:C)

Intersection C uD ObjectIntersectionOf (:C :D)

Union C tD ObjectUnionOf (:C :D)

Exists ∃R.C ObjectSomeValuesFrom (:R :C)

Forall ∀R.C ObjectAllValuesFrom (:R :C)

At least ≥n R.C ObjectMinCardinality (n :R :C)

At most ≤n R.C ObjectMaxCardinality (n :R :C)

Table 5.1: Mapping ALCHIQ constructs to OWL constructs

5.2 OWL Ontologies with Self-Reference

OWL itself – like the very similar and commonly known description logic SROIQ [2] –
does not provide a way to express self-reference up to distance 2 of I and me in concepts1.
To be able to use the OWL API for parsing of the input files with self-reference anyway,
it requires a OWL compatible encoding of the I and me construct. Therefore, the role
name :I and class name :me both with prefix

http://www8.cs.fau.de/yet-another-example.owl#

are used. To encode I.C both ObjectSomeValuesFrom( :I :C ) and ObjectAllValuesFrom(

:I :C) are recognized by the implementation. E.g. a concept like I. ≥4 ¬me can be
encoded as:

ObjectSomeValuesFrom( :I ObjectMinCardinality( 4 ObjectComplementOf( :me )))

Note that this encoding of self-reference in OWL is only recognized by the implemen-
tation of this work! It is not any standardized format. This kind of extension of OWL
is done, because it allows us to run the implementation with real OWL ontologies in
circulation later – even though they do not use self-reference at all.

The pretty printer of the implementation also recognizes I and me in this format and
gives an appropriate output. E.g. for the OWL ontology

1Although SROIQ allows a concept ∃R.Self standing for the ALCQme2 concept I.∃R.me.
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5 Self-Reference in OWL Ontologies

Prefix (:=<http :// www8.cs.fau.de/yet -another -example.owl#>)

Ontology( <http :// www8.cs.fau.de/yet -another -example.owl >

EquivalentClasses( :Celebrity

ObjectSomeValuesFrom( :I

ObjectAllValuesFrom( :seenBy ObjectSomeValuesFrom( :

knows :me))))

)

the output of the pretty printer is:

Celebrity ≡ I.∀seenBy .(∃knows.me)

5.3 Usage

Assuming the implementation i-me-owl is set up like described in Appendix A, the
calling schema is described by this usage line:

./i-me-owl action [input [output ]]

It performs a certain action, reads the input data from the file specified by input or from
stdin if the string “-” is given. The result is written to the file specified by output or
to stdout if the string “-” is given. input and output are optional arguments and both
default to the string “-”. The most important actions can be found in Table 5.2. The

action Behaviour

--help List all possible actions and their meaning.
print Pretty print the given ontology using unicode charac-

ters.
normalize Do the normalization described in Chapter 3 and re-

solve role inverses and role hierarchies as described in
Chapter 3.

convert First normalize, then do the actual transformation using
the optimizations from Section 4.3 and output a plain
OWL ontology.

Table 5.2: The usage of i-me-owl

results of the axioms generated by the implementation can be visualized very well.

Example 5.1 (chain.owl). Consider the ALCQme2 TBox which is encoded as follows
in OWL:

T ≡ I.∃S.¬me
T ≡ I.∀R.(∃S.me)
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5.3 Usage

It states that every node has an S-successor which is not itself and that the inverse of
R is a subrole of S.

After converting the ontology using ./i-me-owl convert, the classification – the hier-
archy of concepts regarding concept inclusion – gives Figure 5.1. There is a vertex for
each class of equivalent concepts and an edge from C to D iff it is C w D and there is
no atomic concept between them.

The concept Root denotes the concept that should hold at the root of the tree in any
model. The other concepts are the self-loop and uplink concepts as well as the A`:C
concepts known from the translation. It is worth mentioning, that many concept inclu-
sions we intuitively see in the TBox are reflected in the hierarchy. Only some of those –
together with their intuitive explanations – are:

• 	R is a subconcept of 	S, because R is the inverse subrole of S.

• A∗∗:≥1S.me is equivalent to 	S, it directly follows from the ALCQme2 semantics.
Note that A∗∗:≥1R.me does not occur in the classification because ≥1 R.me is not a
pseudo-subformula in the given TBox.

• ↑R is a subconcept of A∗f :≤1S.me, because R− is a subrole of S.

This confirms that the ALCQme2 formulas are encoded correctly by the implementation.
N
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5.4 Benchmarking

5.4 Benchmarking

For any type of reduction, the blowup is a characteristic property. It describes how large
the output of the reduction is compared to the input. In case of ontologies, two types
of measurements are analyzed:

• The file size: how much more memory does it take to save the ontology?

• The reasoning time: how longer does it take to check the consistency of the ontol-
ogy?

The blowup of the file size already can be estimated theoretically in the O-notation: let
the original file have the size of n bytes. The original ontology is now expressed using
constantly many atomic concepts for each subformula. Each atomic concept representing
a subformula needs constantly many axioms describing its behaviour, so this part takes
O(n). But for each subformula, a new atomic concept with a new name has to be created,
i.e. it is needed to encode O(n) new concept names – each of the length O(log n) – which
in total takes O(n · log n) disk space.

Additionally a role and a concept has to be added to describe the tree. This description
consists of the “father of”-relation and the concept which holds at the root. But the
number of concept names in the formula for the root is linearly bounded in the number
of subformulas in the original ontology, i.e. the entire formula again needs in O(n · log n)
space.

So in total it is expected that the generated ontology has a file size bounded by O(n ·
log n). But it is likely not to see the logarithmic factor for ontologies of some reasonable
size because the extra space needed for encoding the concept names with e.g. up to 20
digits is much lower than the constant factor for each axiom.

For the benchmarking, an OWL ontology containing the axioms F1, . . . , Fm is tested as
follows. Consider the ontologies Oi consisting of the axioms F1, . . . , Fi. For each – or
every tenth – Oi, measure its file size si in bytes, transform it using the implementation
to some ontology O′i with some file size s′i. Then plot the graphs for i 7→ si, i 7→ s′i,

i 7→ s′i
si

in logarithmic scale and i 7→ s′i
si

also in linear scale. The blowup in size is
s′i
si

.

The graph for the facts Fi = (Ci ≡ Di) can be seen in Figure 5.2. As the graph
visualizes, the blowup nearly is constant, which is not surprising, because there are
many independent axioms. For a more realistic example like the pizza ontology[15] it
takes some steps until the constant factor is reached, as shown by Figure 5.3.

Testing the time for consistency checking has been done similar to the file size measure-
ment: instead of measuring the file size si, the time ti for checking the consistency of Oi

has been plotted. Therefore, ti is the average CPU time2 in milliseconds from doing the
consistency checking 4 times by the Hermit reasoner.

2Time spent in user and kernel mode, without the time waiting for a time slice or for IO
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Figure 5.2: Size blowup for the axioms Fi = (Ci ≡ Di)
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Figure 5.3: Size blowup of the pizza ontology
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5.4 Benchmarking

Measuring the time blowup for the same ontologies as before shows, that the blowup for
consistency checking time is very small, as shown by Figure 5.4 and Figure 5.5.
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Figure 5.4: Time blowup for the axioms Fi = (Ci ≡ Di)
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6 Conclusion

We have seen that ALCQme2 is decidable which was shown by the polynomial reduction
to ALCHIQ. As TBox and RBox consistency checking for the latter one is Exptime-
complete [16], consistency checking for ALCQme2 is Exptime-complete, too.

The reduction enabled a conversion from OWL ontologies with the self-referential con-
struct to plain OWL ontologies, which can be fed to any reasoner compatible to OWL.
This implementation also is usable in practice, as the blowup in reasoning time is appli-
cable. So additional to modelling a narcissist in OWL, reasoning is now possible about
those who say “I only like people who also like me”.

The practical view on performance has to be distinguished from the theoretical com-
plexity class. As shown, in practice the blowup in file size is determined by possibly
large factors that may disappear in the O-notation completely.

In future work it may be investigated how self-reference interacts with other type of
axioms like ABoxes, which are not considered in this thesis. It also can be examined
how bounded self-reference interacts e.g. with transitive roles, which is an additional
feature of SROIQ compared to ALCHIQ.
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A Setting up i-me-owl

These are the system requirements for using the implementation i-me-owl:

• scala ≥2.9.2

• bash ≥4.2.0

• GNU Make (Only for building)

• git (Only when fetching the sources from the internet)

Having the requirements installed, one can setup the implementation by doing the fol-
lowing steps in a shell.

The sources for i-me-owl can be fetched via git:

git clone git:// git.code.sf.net/p/imeowl/code i-me-owl

cd i-me -owl/

During git clone, an internet connection is required. Current information about i-me-owl
can be found on the project page [17]. For build instructions and further information
see the README file in the project directory.

Then ./i-me-owl can be used as described in Section 5.3. The project also features
many examples for both ALCHIQ and ALCHIQme2 ontologies, which can be found
in the examples/ subdirectory.
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